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ABSTRACT

We consider Z-matrices and inverse Z-matrices, i.e.
those nonsingular matrices whose inverses are Z-
matrices. Recently Fiedler and Markham
introduced a classification of Z-matrices. This
classification directly leads to a classification of
inverse Z-matrices. Among all classes of Z-
matrices and inverse Z-matrices, the classes of M-
matrices, NO-matrices, FO-matrices, and inverse M-
matrices, inverse NO-matrices and inverse FO-
matrices, respectively, have been studied in detail.
Here we discuss each single class of Z-matrices
and inverse Z-matrices as well as considering the
whole classes of Z-matrices and inverse Z-
matrices.

CHARACTERIZING Z - MATRICES
In this section, we have given the basic results ,
lemma and the theorems of Z - matrices .

Definition: 1.1
Suppose 0 #x e R"andy e R". LetP
be the permutation matrix chosen so that

Xl
Py = | X, [InwhichX;>0,X,>0
XS
and X 3= 0 (entry - wise ) and suppose that
Yl
P =1Y,
Y3

is partitioned conformally with x . Except for X ;
and X ,any one or two of X ;, X ,and X 3may be
empty .

Consider the following properties :

(P 1) If X qisempty and X 3 is not, then
Y ;>0andif X, isempty and X 3 is not, then Y 5
<0

(P2) X10Y; % 0andX,0Y, %0

(P3) X10Y; €0andX,0Y, %0

LEMMA : 1.2

LetAe M (R).Then A € Zifand only
if foreach0O=x eR".
x and Ax satisfy (P ;).

PROOF :
LetAe M, (R).
Ifn=1, the result is clear .
Assume hence forth thenn > 2.
In order to prove necessity , assume that A € Z and

Xl
0%x=|X,|eR"
XS

inwhich X ;>0,X,<0and X3=0.If X is
empty and X 3 is not , then , partitioning y and A
conformally with x , we have

Y:[YZ}Z{AZZ Aza}{xz}: AX
Y3 A32 A33 X3

[since x=0, X, is nonempty].
Thus,

Y3=A32,X2 >0.
Similarly,
if X, isempty and X ;is not , if follows that Y 5 <
0.
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Thus, (i) foreach0 < x e R" " andeveryieN,x
x and Ax satisfy by (P ;). and Ax are doubly closed - sign related and
Conversely , (i) there isa vector 0 <X e R"such that A X .

Assume the contrary , say a;j>0somei#j.
Ifx=-ej,then X ;isempty and X 5 is not .
But Y 3 2 0, which contradicts (P ).
Hence the lemma .

THEOREM : 1.3

LetAeM,(R).Then A € K, ifand
only if foreach0 <x € R", x and Ax are doubly
closed - sign related .
PROOF:

LetAe M, (R).

Since the result is clear for n = 1 , we
assume thatn> 2.

Assume that forevery 0 #x € R". x and
Ax are doubly closed - sign related .

LetO=x eR".

Then x and Ax satisfy (P ;)and (P 3).
Hence , applying the lemma (2.2 ), A € Z . Further
,since x =0, (P 3) implies that there is a
subscribt i such that x; #0and x;y; > 0.
This, inturn, implies that A isan M - matrix .
Conversely ,

Suppose that Aisan M - matrix , 0 # X €
R"and y = Ax.

Then , A € Z and it follows from the
lemma that ( P ; ) holds . Writing X in partitioned
form and partitioning y and A conformally with x ,
we have

Y, Ay Ap Ag || X,
Y2 = A21 Azz A23 Xz
Y, Ag Agy Ay || X

in which X >0, X,<0and X ; =0. Thus
assuming X 1 is non empty ,
we have Y1:A11X1+A12 X2 0I’A11X1=
Yl 'A12 XZ .

Now if Y ;< 0, it followsthat A ;X ;<
0.

Thus , there is € > 0 such that (A ;; + € |
)X1<O.

But this contradicts the fact that A, + €
I is a non singular
M - matrix and hence a P — matrix .

Thus,Y 1 =< 0.So0(P;)holds.
Hence the theorem .

THEOREM : 1.4
Let Ae M,(R).Then A € N, ifand
only if

PROOF :

Let Ae M ,(R).ifA e Ny, theneach
proper submatrix is an H - matrix and it follows
from theorem 2.3 that (i) holds .

Now A =t | — B in which B > 0 is
irreducibleand p,_ ;(B)<t<p(B).

There is a positive vector ﬁ e R" such that B ﬁ
=p (X N

Thus, AX =(tl-p(B)) X <0.

Conversely ,

Suppose that A satisfies (i) and (i), say
AX = y < 0. Then there is € > 0 such that

(A+el)X =7<0.

Since (i) holds, A e Z and it follows
from theorem ( 2.3 ) that principal submatrices of
order n—1 are M - matrices .

Thus, A is either an M - matrix or an N , matrix .
If Ais an M - matrix , then A + € | is non -
singular M - matrix and hence (A+el1) '>0.
Hence, X =(A+ e 1) ! Z<0, acontradiction .
Thus, Alisan N o matrix .

Hence the proof .

THEOREM : 1.5

Let A € M,(R)inwhichn>3.Fork
=1,2,....,n 2, AeLifandonly if

(i) foreach 0 # x e R"andevery a
c Nwith|a|=k, x and A [a] x are doubly
closed sign - related and

(ii) there isp < N with |[B| = k+1
and a vector 0< X e R**! such that

A[B] X <o0.

PROOF :
Let A e My(R)andke {1,2,....,n-2}.

If A e L, then each proper principal
submatrix of order k is an M - matrix and it
follows from theorem (2.3 ) that (i) holds .
Further thereisp < N with || = k+ 1 such
that A[B]isan N, - matrix,say A[B]=tlI-B
=p(B).
Let X be the Perron vector associated with p (B)

Then, A[B] X =(t-p(B)) X<0.
Conversely ,

Suppose that A satisfies (i) and (i) for
someke {1,2,...,n-2}say A[B] X =Y<
Oinwhich isp < N with || = k+1.
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Since (i) holds and , A € Z and it follows
from theorem ( 2.3 ) that all principal submatrices
of order k or less are M - matrices .

Then it follows from theorem ( 2.4 ) that
A[B]isan Ng - matrix .

Thus, A e L.

Hence the proof .

THEOREM : 1.6
Let A e M,(R).ThenLet A € L,
if and only if
(i) forevery 0 # x € R", xand Ax
satisfy (P ;) and
(ii) for every k e N, there is0O # X €
R"and o = Nwith|a|=ksuchthatxo A[a]

x< 0.

PROOF :

Let A e M,(R)andKe N.

If AeLythen A e Zand (i) follows
from the lemma .

Further A has atleast one negative
diagonal entry , say a ;.

Then , for each oo = N with | a. | =k and j
ca,Afale ;<0, where e ;denote the j"
standard basis vector .

Thus, e joA[a]e ;<0, which
establishes necessity .

Conversely ,

Suppose (i) and (ii) holds .

Since (ii ) holds , A € Z and in, light of
the theorems (2.3-2.5).

(ii) impliesthat A ¢ L for ke N .

Thus , A € L o, which completes the
proof .

Hence the theorem .

Z - MATRICES AND ITS INVERSE

2.1 Z- MATRICES

In this chapter we have 2 sections . In this section
we have the Z - matrices and inverse Z — matrices .

DEFINITION: 2.1.1
LetL (fors=0,...,n) denote the class
of matrices consisting of real n x n matrices which
have the form
A=tl-B,whereB>0andp(B)<t
< P+l cereeennn ( 311 )

ps(B) :=max{p(B):Bisans x s principal
submatrix of B } and we get
po(B):=-wandpp+1(B):= .

REMARK : 2.1.2

If one considers matrices of different
dimensions, one should introduce another index
which gives the dimension of the matrices . Hence
one should use L s, in definition (3.1.1).
Then the two classes L s, and L ;  consist of
matrices of the same type . (eg . M — matrices , N
o - matrices ) ifand only ifn—s =m-—t.

THEOREM :2.1.3

Let A € R" " be a nonsingular matrix ,
and let A be a real eigen value of Awith A=p (A
). Then

Ao <piransr27 (A)

..................... (3.1.2)

Since Z - matrices are closely related to
non negative matrices, we now obtain .

THEOREM : 2.14

Let A L. Then

(i) detA>=0ifs=n,

(ii) detA<0if[n/2] <s<n.
PROOF :

It is well known that (i) holds .

Let AeLswithA=tl-B,B>0anda
fixedte R.
Now consider the characteristic polynomial of B ,

y(z)=det(z1-B).

The real zeros of y ( z ) indicate the changes of the
sign of the determinant of Z - matrices
corresponding to the matrix B. But the zeros of y (
z ) are the eigen values of B .

Hence , with theorem 3.1.3 (i ) follows .

Hence the theorem .

EXAMPLE : 2.1.5

Let J , denote the k x k matrix of all ones .
First assume that nis even. Letr:=n/2 .Then let
All: :alr'\]randAzz::ﬁln_r '\]n_r.

Ifs<a,p<s+1;thenal,-J;andp 1,
v -Jn.rareinly.

Now , ifs<n /2, then det A ;; <0 and
det A ,<0.

However , A=A 1 ® A5 el and det A
>0.

Similarly , one can construct examples for
an odd dimension n .
Thus , all classes of Z - matrices consisting of
matrices of different dimensions , except the
classes of M - matrices , N - matrices and F -
matrices include matrices with different signs of
their determinants.
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However , if we consider the classes L  which
consist by definition of matrices of the same
definitionn, thendet A<OifAe L and [n/2]
<s<n.

Obviously , every Z - matrix A , except an M -
matrix , has at least one negative eigen value .
However , if Ae L with[n/2]<s<n, then
theorem states that A has exactly one negative
eigen value .

THEOREM : 2.1.6

Let A=[a;;]beaZ—matrix.letn(A)
denote the smallest real eigen value of A

Let a = max{a;j}. Then the circle ¢

(A):={ze I": |z—a|<a—n(a)} contains
all eigen values of A .
PROOF :

Let A be an eigen value of A .

Since a=max {aij}, the matrixal — A
is nonnegative .
Hence , the modules of each eigenvalues of a | — A
islessthan p(al—-A).
Thus,
la-A|<p(al-A)=a-n(A).
Hence the theorem .

2.2 INVERSE Z - MATRICES
In this section , we have definition and the
theorems of Inverse Z — matrices .

DEFINITION : 2.2.1

A nonsingular matrix is called an inverse
Z - matrix if C " 'isa Z - matrix . More precisely ,
a nonsingular matrix C e R"'" is called inverse L 5
—matrix if C"' e L foroneswithSe {0,....n

}.

Thus , inverse M - matrices are inverse L ,
- matrices , inverse N ( - matrices are inverse L .1
- matrices and inverse F ; - matrices are inverse L ,
_» - matrices .

THEOREM :2.2.2
Let C be an inverse Z - matrix partitioned

C= |:C11 ClZ:|
C21 C22

Where C 1, is a non singular principal submatrix of
C of orbitrary order . Then C / C ; ; is also an
inverse Z - matrix .

as

PROOF :
Let A : = C ! be partitioned conformally
with C so that

A A
A Ay

Using the explicit form of C ~* as in 3.2.2 we have

~o(%,)

Hence , A, , is nonsingular . But A, is a principal
submatrix of a Z — matrix ; therefore A, , itself is a
Z — matrix .

Thus, % = A, isan Z - matrix .
11

Hence the theorem .

DEFINITION : 2.2.3
A=[a;j]eR""isoftype- D if
a,i<j
a; = . . Wherea,>a,
aj,l > ]
1> ... >ag
Markham proved that the inverse of a type D -
matrix A , satisfying a ; > 0 is a tridiagonal M -
matrix .

THEOREM :2.24

Suppose A=[a;j] € R" " is a matrix of
type - D with a ;= 0. Let s denote the number of
nonpositive parameters in the sequence a ,> ... >a
1. Then A~ 'is a tridiagonal Z - matrix and A ‘e
Ly q,where L_;:=L,.

PROOF :

Since a ; = 0, A is nonsingular . In the
following we prove by induction on the dimension
n that the inverse of A is a tridiagonal Z - matrix .
Forn=1and n = 2 this is obvious .

Now we partition A as

o[ A
A Ay

Such that Ay eR""and A,, e R" """ 1
<r<n, are nonsingular.

The inverse of A is given by
- 1

) )
wa(n)

Proposition ( 3.2.8 ) and the inductive hypothesis

-1 -1
yield that (y and are tridiagonal
Ay Ao

Z - matrices .

-1
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As seen in 3.2.4 we have Aﬂ A12 = erén_r-
Moreover , since he first diagonal entry of (% )
1

isa,+1—a,>0, we obtain with (3.2.3) that only
the entry at position ( r , 1 ) of

-1
_AfllAu (%&1) is different from zero and

that this entry is negative .

Then , with the symmetry of A , we have that A ~*
is a tridiagonal Z — matrix .

If s=0, Ais nonnegative .

Thus, A~ *isan M - matrix .

Ifs>1, if follows from (3.2.5) thatdet A<O0.
Moreover , all principal minors of order greater
than n—s are nonpositive .

However , the determinant of the principal matrix
consisting of the rows and columns s + 1, ..., nis
positive .

But then theorem gives that AleL, ;.
Hence the theorem .

REFERENCES

[1] Johnson .G . A, Inverse Ny — matrices , Linear
Algebra Appl .(1985).

[2] Meyer . C . D , Uncoupling the perron
eigenvector problem , Linear Algebra Appl .(
1989) .

[3] Nabben . R , Z - matrices and inverse Z -
matrices , Linear Algebra Appl (1977) .

[4] Smith . R .L , Some notes on Z - matrices ,
Linear algebra Appl .(1988)

[5] Smith.R.L , Some results on a partition of Z
- matrices , Linear Algebra Appl . (1995).

[6] Smith . Ronald . L , on characterizing Z -
matrices , Linear Algebra and its Appl. (2001

).

DOI: 10.35629/5252-050312631267  |Impact Factorvalue 6.18| 1ISO 9001: 2008 Certified Journal  Page 1267



