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ABSTRACT 

We consider Z-matrices and inverse Z-matrices, i.e. 

those nonsingular matrices whose inverses are Z-

matrices. Recently Fiedler and Markham 

introduced a classification of Z-matrices. This 

classification directly leads to a classification of 

inverse Z-matrices. Among all classes of Z-

matrices and inverse Z-matrices, the classes of M-

matrices, N0-matrices, F0-matrices, and inverse M-

matrices, inverse N0-matrices and inverse F0-

matrices, respectively, have been studied in detail. 

Here we discuss each single class of Z-matrices 

and inverse Z-matrices as well as considering the 

whole classes of Z-matrices and inverse Z-

matrices.  

 

CHARACTERIZING Z – MATRICES 

In this section, we have given the basic results , 

lemma and the theorems of Z - matrices . 

 

Definition: 1.1 

 Suppose 0  x   R 
n 

and y  R 
n
 . Let P 

be the permutation matrix chosen so that  

 

1

2

3

P   X

X

X

X

 
 


 
  

In which X 1 > 0 , X 2 > 0 

and X 3 = 0 ( entry - wise ) and suppose that  

            

1
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3

P   Y

Y

Y

Y

 
 


 
  

 

is partitioned conformally with x . Except for X 1 

and X 2 any one or two of  X 1 , X 2 and  X 3 may be 

empty . 

 

 

Consider the following properties : 

 ( P 1 ) If X 1 is empty and X 3 is not , then 

Y 3  0 and if X 2 is empty and X 3 is not , then Y 3 

 0 

            ( P 2 )  X 1  Y 1   0 and X 2  Y 2   0    

            ( P 3 )  X 1  Y 1   0 and X 2  Y 2  0   

 

LEMMA : 1.2 

 Let A  M n ( R ) . Then A  Z if and only 

if for each 0  x   R 
n 
.                

 x and Ax satisfy ( P 1 ) . 

 

PROOF : 

 Let A  M n ( R ) .  

If n = 1 , the result is clear .  

Assume hence forth then n  2 . 

In order to prove necessity , assume that A  Z and  

 

                                  

1

2

3

0  x  .n

X

X R

X

 
 

  
 
  

 

 

in which X 1 > 0 , X 2 < 0 and X 3 = 0 . If X 1 is 

empty and X 3 is not , then , partitioning y and A 

conformally with x , we have 

 

                  
22 232 2

3 332 33

A  AY
Y=

Y A  A

X
AX

X

    
     

    
   

[ since x  0 , X 2  is  non empty ] .  

Thus , 

          Y 3  = A 3 2  , X 2   0 . 

Similarly ,  

if X 2  is empty and X 3 is not , if follows that Y 3   

0 . 
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Thus , 

x and Ax satisfy by ( P 1 ) . 

Conversely ,  

Assume the contrary , say  a i j > 0 some i  j . 

If x = - e j , then X 1 is empty and X 3 is not . 

But  Y 3  0 , which contradicts  ( P 1 ) . 

Hence the lemma . 

 

THEOREM : 1.3 

 Let A  M n ( R ) . Then A  K 0 if and 

only if for each 0 < x   R 
n 

, x and Ax are doubly 

closed - sign related . 

PROOF:    

 Let A  M n ( R ) . 

 Since the result is clear for n = 1 , we 

assume that n  2 . 

 Assume that for every 0  x   R 
n 

. x and 

Ax are doubly closed - sign   related . 

 Let 0  x   R 
n 
. 

 Then x and Ax satisfy ( P 1 ) and ( P 3 ) . 

Hence , applying the lemma ( 2.2 ), A  Z . Further 

, since x  0 ,           ( P 3 ) implies that there is a 

subscribt i such that x i  0 and x i y i  0 . 

This , in turn , implies that A is an M - matrix . 

Conversely , 

 Suppose that A is an M - matrix , 0  x   

R 
n 
and y = Ax . 

 

 Then , A  Z and it follows from the 

lemma that ( P 1 ) holds . Writing x in partitioned 

form and partitioning y and A conformally with x , 

we have 

                          

11 12 131 1

2 21 22 23 2

3 331 32 33

A  A  AY

Y A  A  A

Y A  A  A

X

X

X

    
    


    
        

 

 

in which X 1 > 0 , X 2 < 0 and X 1 = 0. Thus 

assuming X 1 is non empty ,          

 we have   Y 1  = A 1 1 X 1 + A 1 2  X 2  or A 1 1 X 1 = 

Y 1  - A 1 2  X 2  . 

 Now if  Y 1 < 0 , it follows that A 1 1 X 1 < 

0 . 

 Thus , there is  > 0 such that (A 1 1  +  I 

) X 1 < 0 . 

 But this contradicts the fact that  A 1 1  +  

I is a non singular                         

M - matrix and hence a P – matrix . 

 Thus , Y 1  =  0 . So ( P 3 ) holds . 

Hence the theorem . 

 

THEOREM : 1.4   

 Let A  M n ( R ) . Then A  N 0 if and 

only if  

 ( i )   for each 0  <  x   R 
n - 1 

 and every i  N , x 

and Ax are doubly closed - sign related and 

( ii )  there is a vector 0 <  R
n 

such that A . 

 

PROOF : 

 Let A  M n ( R ) . if A  N 0 , then each 

proper submatrix is an  H - matrix and it follows 

from theorem 2.3 that ( i ) holds . 

 Now A = t I – B in which B  0 is 

irreducible and   n – 1 ( B )  t    ( B ) . 

There is a positive vector   R
n
  such that B  

=  
( B ) .  

Thus , A  = ( t I -  ( B ) )  < 0 . 

Conversely , 

 Suppose that A satisfies ( i ) and ( ii ) , say 

A  = y < 0 . Then there is  > 0 such that     

                     ( A +  I )  = Z < 0 . 

 Since ( i ) holds ,  A  Z and it follows 

from theorem ( 2.3 ) that principal submatrices of 

order n – 1 are M - matrices . 

Thus , A is either an M - matrix or an N 0 matrix . 

If A is an M - matrix , then A +  I is non - 

singular M - matrix and hence  ( A +  I )
 – 1 

  0 . 

Hence ,  = (A +  I )
 – 1 

 Z < 0 , a contradiction . 

Thus , A is an N 0 matrix . 

Hence the proof . 

 

THEOREM  : 1.5 

 Let  A    M n ( R ) in which n  3 . For k 

= 1 , 2 , … , n 
– 2 

,  A  L k if and only if  

  ( i )   for each  0    x    R 
k  

and every  

 N with |  | = k ,  x  and A [ ]  x are doubly 

closed sign - related and 

             ( ii )  there  is     N  with  |  |  =  k + 1 

and  a  vector  0 <   R 
k + 1  

such that        

                     A [  ]  < 0 . 

PROOF  : 

Let  A    M n ( R ) and k  { 1 , 2 , …. , n – 2 } . 

 If A  L k , then each proper principal 

submatrix of order k is an  M - matrix and it 

follows from theorem ( 2.3 ) that ( i ) holds . 

Further there is     N  with  |  |  =  k + 1 
 
such 

that A [  ] is an  N 0  - matrix , say A [  ] = t I – B 

=  ( B ) . 

Let  be the Perron vector associated with  ( B ) 

. 

Then ,  A [  ]  = ( t -  ( B ) ) < 0 . 

Conversely ,  

 Suppose that A satisfies ( i ) and ( ii ) for 

some k  { 1 , 2 , …, n – 2 } say  A [  ]  = Y < 

0 in which  is     N  with  |  |  =  k + 1 
 
. 
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 Since ( i ) holds and , A  Z and it follows 

from theorem ( 2.3 ) that all principal submatrices 

of order k or less are M - matrices . 

 Then it follows from theorem ( 2.4 ) that 

A [  ] is an N 0  - matrix . 

 Thus , A  L k . 

Hence the proof . 

 

THEOREM : 1.6   

    Let  A    M n ( R ) .Then Let  A    L 0 

if and only if                                                                                                                                    

           ( i )   for every  0    x    R 
n 

, x and Ax 

satisfy ( P 1 ) and 

           ( ii )  for  every  k  N , there  is 0    x    

R 
n 

.and     N with |  | = k such that x  A [  ] 

x   0 . 

 

PROOF : 

 Let  A    M n ( R ) and K N . 

 If  A  L 0 then A  Z and ( i ) follows 

from the lemma . 

 Further A has atleast one negative 

diagonal entry , say  a i j . 

 Then , for each   N with |  | = k and j 

  , A [ ] e  j  0 , where e  j denote the j
th
 

standard basis vector . 

 Thus ,   e  j  A [  ] e  j  0 , which 

establishes necessity . 

Conversely , 

 Suppose  ( i ) and ( ii ) holds . 

 Since ( ii ) holds , A  Z and in , light of 

the theorems ( 2.3 – 2.5 ) . 

 ( ii ) implies that A  L k for k N . 

 Thus , A  L 0 , which completes the 

proof . 

Hence the theorem . 

 

Z – MATRICES AND  ITS  INVERSE  

2.1 Z – MATRICES 

In this chapter we have 2 sections . In this section 

we have the Z - matrices and inverse Z – matrices . 

 

DEFINITION : 2.1.1 

 Let L s ( for s = 0 , … , n ) denote the class 

of matrices consisting of real n  n matrices which 

have the form  

  A = t I – B , where B  0 and  s ( B )  t  
  s +1     ……… ( 3.1.1 ) 

Here  

   s ( B )  : = max {  ( B ) : B is an s  s principal 

submatrix of B } and we get  

 0 ( B ) : = -  and  n + 1 ( B ) : =   . 

 

 

REMARK : 2.1.2  

                   If one considers matrices of different 

dimensions, one should introduce another index 

which gives the dimension of the matrices . Hence 

one should use L s,n in definition  ( 3.1.1) . 

Then the two classes L s , n and L t , m consist of 

matrices of the same type .  ( eg . M – matrices , N 

0  - matrices ) if and only if n – s  = m – t . 

 

THEOREM : 2.1.3 

 Let A  R 
n , n  

be a nonsingular matrix , 

and let  be a real eigen value of A with      ( A 

) . Then  

                       [ n / 2 ] ( A )                 

…………………   ( 3.1.2 ) 

 Since Z - matrices are closely related to 

non negative matrices ,  we now obtain . 

 

THEOREM : 2.1.4 

 Let A L s . Then 

 ( i )    det A  0 if s = n , 

 ( ii )   det A  0 if [ n / 2 ]   s < n . 

PROOF :  

  It is well known that ( i ) holds . 

  Let A L s with A = t I – B , B  0and a 

fixed t  R .  

Now consider the characteristic polynomial of B , 

   

 ( z ) = det ( z I – B ) . 

The real zeros of  ( z ) indicate the changes of the 

sign of the determinant of  Z - matrices 

corresponding to the matrix B. But the zeros of  ( 

z ) are the eigen values of B . 

Hence , with theorem 3.1.3 ( ii ) follows . 

Hence the theorem . 

 

EXAMPLE : 2.1.5 
 

Let J k denote the k  k matrix of all ones . 

First assume that n is  even . Let r : = n / 2 .Then let  

A 11 :  =  I r - J r and A 22 : =  I n - r  - J n - r .  

 If s   ,  < s + 1 ; then  I r - J r and  I n 

- r  - J n - r are in L s .  

 Now , if s < n / 2 , then det A 11 < 0 and 

det A 22 < 0 . 

       However , A = A 11  A 22  L s and det A 

> 0 . 

 Similarly , one can construct examples for 

an odd dimension n . 

Thus , all classes of Z - matrices consisting of 

matrices of different dimensions , except the 

classes of M - matrices , N 0  - matrices and F 0  - 

matrices include matrices with different signs of 

their determinants.  
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However , if we consider the classes L s which 

consist by definition of matrices of the same 

definition n , then det A  0 if A  L s and   [ n / 2 ] 

 s < n .  

Obviously , every Z - matrix A , except an M - 

matrix , has at least one negative eigen value . 

However , if  A  L s with [ n / 2 ]  s < n , then 

theorem states that  A has exactly one negative 

eigen value .
 

  

THEOREM : 2.1.6 

     Let A = [ a i j ] be a Z – matrix . let n ( A ) 

denote the smallest          real    eigen  value  of   A  

.   Let   a   =   max { a i j } .  Then   the   circle       c 

( A ) : = { z  
n
 :    | z – a |  a – n ( a ) } contains 

all eigen values of A . 

PROOF :
 

 Let  be an eigen value of A . 

 Since a = max { a i j }, the matrix a I – A 

is nonnegative . 

Hence , the modules of each eigenvalues of a I – A 

is less than   ( a I – A ) . 

Thus , 

          | a -  |   ( a I – A ) = a – n ( A ) . 

 Hence the theorem . 

 

2.2 INVERSE Z – MATRICES 

 In this section , we have definition and the 

theorems of  Inverse Z – matrices . 

 

DEFINITION : 2.2.1 

 A nonsingular matrix  is called an inverse 

Z - matrix if C
 – 1

 is a  Z - matrix . More precisely , 

a nonsingular matrix C  R 
n . n 

 is called inverse L 5  

– matrix if C
 – 1

  L s for one s with S  { 0 , … , n 

} . 

 Thus , inverse M - matrices are inverse L n  

- matrices , inverse  N 0  - matrices are inverse L n - 1 

- matrices and inverse F 0  - matrices are inverse L n 

– 2   - matrices . 

 

THEOREM : 2.2.2 

 Let C be an inverse Z - matrix  partitioned 

as  

  C = 
11 12

21 22

C C

C C

 
 
 

   

Where C 1 1 is a  non singular principal submatrix of 

C of orbitrary order . Then C / C 1 1 is also an 

inverse Z - matrix . 

 

PROOF :  
 
 
  

 Let A : = C
 – 1

 be partitioned conformally 

with C so that  

  A =
11 12

21 22

A A

A A

 
 
 

   

Using the explicit form of C
 – 1

 as in 3.2.2 we have 
1

22
11

CA
C



   
 

. 

Hence , A 2 2 is nonsingular . But A 2 2 is a principal 

submatrix of a  Z – matrix ; therefore A 2 2 itself is a 

Z – matrix . 

Thus , 
1

22
11

C A
C

  is an Z – matrix . 

Hence the theorem . 

 

DEFINITION : 2.2.3 

 A = [ a i j ]  R 
n . n 

 is of type - D if 

  
,

,

i

ij

j

a i j
a

a i j


 


   where a n > a n 

- 1 > … > a 1 

Markham proved that the inverse of a type D - 

matrix A , satisfying a 1 > 0 is a tridiagonal M - 

matrix . 

 

THEOREM : 2.2.4 

 Suppose A = [ a i j ]  R 
n . n 

 is a matrix of 

type - D with  a 1  0 . Let s denote the number of 

nonpositive parameters in the sequence a n > … > a 

1 . Then A
 – 1

 is a tridiagonal Z - matrix and  A
 – 1
 

L s – 1 , where  L – 1 : = L n . 

 

PROOF : 

 Since a 1  0 , A is nonsingular . In the 

following we prove by induction on the dimension 

n that the inverse of A is a tridiagonal  Z - matrix . 

For n = 1 and n = 2 this is obvious . 

Now we partition  A as 

    A = 
11 12

21 22

A A

A A

 
 
 

 

Such   that  A 11  R 
n . n 

 and A 2 2  R 
n – r ,  n – r  

 , 1 

 r < n ,    are  non singular . 

The inverse of A is given by  

  A
 – 1

 = 
1 1

1

11 12
22 11

1 1

1

11 21
11 11

A AA A
A A

A AA A
A A

 



 



        
    

         
    

 

Proposition  ( 3.2.8 ) and the inductive hypothesis 

yield that 
1

11

A
A



 
 
 

and 
1

22

A
A



 
 
 

 are tridiagonal 

Z - matrices . 
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As seen in 3.2.4 we have 
1

11 12 .T

r n rA A e 

  

Moreover , since he first diagonal entry of 
11

A
A

 
 
 

 

is a r + 1 – a r > 0 , we obtain with (3.2.3) that only 

the entry at position ( r , 1 )  of  
1

1

11 12
11

AA A
A



    
 

is different from zero and 

that this entry is negative . 

Then , with the symmetry of A , we have that  A
 – 1

 

is a tridiagonal  Z – matrix . 

If s = 0 , A is nonnegative . 

Thus , A
 – 1

 is an M - matrix . 

If s  1 , if follows from ( 3.2.5 ) that det A < 0 . 

Moreover , all principal minors of order greater 

than  n – s  are nonpositive . 

However , the determinant of the principal matrix 

consisting of the rows and columns s + 1 , … , n is 

positive .  

But then theorem gives that  A
 – 1
 L s – 1 . 

Hence the theorem . 
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