\mathbf{Z} - Matrices and Inverse Z - Matrices

R.Abarna, S.Anbarasi, B.Jayam, R.Vinitha
Department of Mathematics, Annai college of Arts and Science, Kovilacheri, kumbakonam, Thanjavur, Tamilnadu, India.
Department of Mathematics, Annai college of Arts and Science, Kovilacheri, kumbakonam, Thanjavur, Tamilnadu ,India.
Department of Mathematics, Annai college of Arts and Science, Kovilacheri, kumbakonam, Thanjavur, Tamilnadu ,India.
Department of Mathematics, Annai college of Arts and Science, Kovilacheri, kumbakonam, Thanjavur, Tamilnadu ,India.

ABSTRACT

We consider Z-matrices and inverse Z-matrices, i.e. those nonsingular matrices whose inverses are Zmatrices. Recently Fiedler and Markham introduced a classification of Z-matrices. This classification directly leads to a classification of inverse Z-matrices. Among all classes of Zmatrices and inverse Z-matrices, the classes of Mmatrices, N0-matrices, F0-matrices, and inverse Mmatrices, inverse N0-matrices and inverse F0matrices, respectively, have been studied in detail. Here we discuss each single class of Z-matrices and inverse Z-matrices as well as considering the whole classes of Z -matrices and inverse Z matrices.

CHARACTERIZING Z - MATRICES

In this section, we have given the basic results , lemma and the theorems of Z - matrices .

Definition: 1.1

Suppose $0 \neq x \in R^{n}$ and $y \in R^{n}$. Let P be the permutation matrix chosen so that

$$
\mathrm{P}_{X}=\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right] \text { In which } X_{1}>0, \mathrm{X}_{2}>0
$$

and $X_{3}=0$ (entry - wise) and suppose that

$$
\mathrm{P}_{Y}=\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right]
$$

is partitioned conformally with x . Except for X_{1} and X_{2} any one or two of X_{1}, X_{2} and X_{3} may be empty.

Consider the following properties :

(P_{1}) If X_{1} is empty and X_{3} is not, then $Y_{3} \geq 0$ and if X_{2} is empty and X_{3} is not, then Y_{3} ≤ 0

$$
\begin{aligned}
& \left(\mathrm{P}_{2}\right) \mathrm{X}_{1} \circ \mathrm{Y}_{1} \leq 0 \text { and } \mathrm{X}_{2} \circ \mathrm{Y}_{2} \leq 0 \\
& \left(\mathrm{P}_{3}\right) \mathrm{X}_{1} \circ \mathrm{Y}_{1} \nless 0 \text { and } \mathrm{X}_{2} \circ \mathrm{Y}_{2} \nless 0
\end{aligned}
$$

LEMMA : 1.2

Let $A \in M_{n}(R)$. Then $A \in Z$ if and only if for each $0 \neq x \in R^{n}$.
x and Ax satisfy $\left(P_{1}\right)$.

PROOF :

$$
\text { Let } A \in M_{n}(R)
$$

If $\mathrm{n}=1$, the result is clear .
Assume hence forth then $n \geq 2$.
In order to prove necessity , assume that $\mathrm{A} \in \mathrm{Z}$ and

$$
0 \neq \mathrm{x}=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right] \in R^{n}
$$

in which $X_{1}>0, X_{2}<0$ and $X_{3}=0$. If X_{1} is empty and X_{3} is not, then, partitioning y and A conformally with x , we have

$$
\mathrm{Y}=\left[\begin{array}{c}
\mathrm{Y}_{2} \\
\mathrm{Y}_{3}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{A}_{22} & \mathrm{~A}_{23} \\
\mathrm{~A}_{32} & \mathrm{~A}_{33}
\end{array}\right]\left[\begin{array}{l}
X_{2} \\
X_{3}
\end{array}\right]=A X
$$

[since $\mathrm{x} \neq 0, \mathrm{X}_{2}$ is non empty].
Thus,

$$
\mathrm{Y}_{3}=\mathrm{A}_{32}, \mathrm{X}_{2} \geq 0
$$

Similarly,
if X_{2} is empty and X_{3} is not, if follows that $\mathrm{Y}_{3} \leq$ 0 .

Thus,
x and Ax satisfy by (P_{1}).
Conversely ,
Assume the contrary, say $\mathrm{a}_{\mathrm{ij}}>0$ some $\mathrm{i} \neq \mathrm{j}$.
If $x=-e_{i}$, then X_{1} is empty and X_{3} is not .
But $\mathrm{Y}_{3} \geqslant 0$, which contradicts $\left(\mathrm{P}_{1}\right)$.
Hence the lemma.

THEOREM : 1.3

Let $A \in M_{n}(R)$. Then $A \in K_{0}$ if and only if for each $0<x \in R^{n}$, x and $A x$ are doubly closed - sign related.

PROOF:

Let $A \in M_{n}(R)$.
Since the result is clear for $\mathrm{n}=1$, we assume that $\mathrm{n} \geq 2$.

Assume that for every $0 \neq x \in R^{n} . x$ and Ax are doubly closed - sign related.

Let $0 \neq x \in R^{n}$.
Then x and Ax satisfy (P_{1}) and (P_{3}).
Hence, applying the lemma (2.2), $\mathrm{A} \in \mathrm{Z}$. Further , since $x \neq 0, \quad\left(\mathrm{P}_{3}\right)$ implies that there is a subscribt i such that $x_{i} \neq 0$ and $x_{i} y_{i} \geq 0$.
This , in turn, implies that A is an M - matrix .
Conversely ,
Suppose that A is an M - matrix , $0 \neq \mathrm{x} \in$ R^{n} and $y=A x$.

Then, $\mathrm{A} \in \mathrm{Z}$ and it follows from the lemma that $\left(\mathrm{P}_{1}\right)$ holds. Writing x in partitioned form and partitioning y and A conformally with x , we have

$$
\left[\begin{array}{l}
\mathrm{Y}_{1} \\
\mathrm{Y}_{2} \\
\mathrm{Y}_{3}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{A}_{11} & \mathrm{~A}_{12} & \mathrm{~A}_{13} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22} & \mathrm{~A}_{23} \\
\mathrm{~A}_{31} & \mathrm{~A}_{32} & \mathrm{~A}_{33}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]
$$

in which $\mathrm{X}_{1}>0, \mathrm{X}_{2}<0$ and $\mathrm{X}_{1}=0$. Thus assuming X_{1} is non empty ,
we have $\mathrm{Y}_{1}=\mathrm{A}_{11} \mathrm{X}_{1}+\mathrm{A}_{12} \mathrm{X}_{2}$ or $\mathrm{A}_{11} \mathrm{X}_{1}=$ $\mathrm{Y}_{1}-\mathrm{A}_{12} \mathrm{X}_{2}$.

Now if $\mathrm{Y}_{1}<0$, it follows that $\mathrm{A}_{11} \mathrm{X}_{1}<$ 0 。

Thus, there is $\in>0$ such that $\left(\mathrm{A}_{11}+\in \mathrm{I}\right.$) $X_{1}<0$.

But this contradicts the fact that $\mathrm{A}_{11}+\epsilon$ I is a non singular
M - matrix and hence a P - matrix .
Thus, $\mathrm{Y}_{1}=\mathbb{K} 0 . \operatorname{So}\left(\mathrm{P}_{3}\right)$ holds .
Hence the theorem .

THEOREM : 1.4

Let $A \in M_{n}(R)$. Then $A \in N_{0}$ if and only if
(i) for each $0<x \in R^{n-1}$ and every $i \in N$, x and Ax are doubly closed - sign related and
(ii) there is a vector $0<\widehat{\mathbf{X}} \in \mathrm{R}^{\mathrm{n}}$ such that $\mathrm{A} \widehat{\mathbf{X}}$.

PROOF :

Let $A \in M_{n}(R)$. if $A \in N_{0}$, then each proper submatrix is an H - matrix and it follows from theorem 2.3 that (i) holds .

Now $A=t I-B$ in which $B \geq 0$ is irreducible and $\rho_{n-1}(B) \leq t \leq \rho(B)$.
There is a positive vector $\widehat{\mathbf{X}} \in \mathrm{R}^{\mathrm{n}}$ such that $B \widehat{\mathbf{X}}$ $=\rho^{(\text {B })} \widehat{\mathbf{x}}$.
Thus, $\mathrm{A} \widehat{\mathbf{x}}=(\mathrm{tI}-\rho(\mathrm{B})) \widehat{\mathbf{x}}<0$.
Conversely,
Suppose that A satisfies (i) and (ii), say
$\mathrm{A} \widehat{\mathbf{X}}=\mathrm{y}<0$. Then there is $\in>0$ such that

$$
(\mathrm{A}+\in \mathrm{I}) \widehat{\mathbf{x}}=\mathrm{Z}<0 .
$$

Since (i) holds , $A \in Z$ and it follows from theorem (2.3) that principal submatrices of order $\mathrm{n}-1$ are M - matrices .
Thus, A is either an M - matrix or an N_{0} matrix .
If A is an M - matrix, then $A+\in I$ is non singular M-matrix and hence $(A+\in I)^{-1} \geq 0$.
Hence, $\widehat{\mathbf{x}}=(\mathrm{A}+\in \mathrm{I})^{-1} \mathrm{Z}<0$, a contradiction.
Thus, A is an N_{0} matrix .
Hence the proof.

THEOREM : 1.5

Let $A \in M_{n}(R)$ in which $n \geq 3$. For k $=1,2, \ldots, \mathrm{n}^{-2}, \mathrm{~A} \in \mathrm{~L}_{\mathrm{k}}$ if and only if
(i) for each $0 \neq \mathrm{x} \in \mathrm{R}^{\mathrm{k}}$ and every α $\subseteq \mathrm{N}$ with $|\alpha|=\mathrm{k}, \mathrm{x}$ and $\mathrm{A}[\alpha] \mathrm{x}$ are doubly closed sign - related and
(ii) there is $\beta \subseteq \mathrm{N}$ with $|\beta|=\mathrm{k}+1$
and a vector $0<\widehat{\mathbf{x}} \in \mathrm{R}^{\mathrm{k}+1}$ such that

$$
A[\beta] \widehat{\mathbf{x}}<0
$$

PROOF :

Let $A \in M_{n}(R)$ and $k \in\{1,2, \ldots, n-2\}$.
If $A \in L_{k}$, then each proper principal submatrix of order k is an M - matrix and it follows from theorem (2.3) that (i) holds .
Further there is $\beta \subseteq \mathrm{N}$ with $|\beta|=\mathrm{k}+1$ such that $A[\beta]$ is an N_{0} - matrix, say $A[\beta]=t I-B$ $=\rho(\mathrm{B})$.
Let $\widehat{\mathbf{X}}$ be the Perron vector associated with ρ (B)
Then, $A[\beta] \widehat{\mathbf{x}}=(t-\rho(B)) \widehat{\mathbf{x}}<0$.
Conversely ,
Suppose that A satisfies (i) and (ii) for some $\mathrm{k} \in\{1,2, \ldots, \mathrm{n}-2\}$ say $\mathrm{A}[\beta] \widehat{\mathbf{X}}=\mathrm{Y}<$ 0 in which is $\beta \subseteq \mathrm{N}$ with $|\beta|=\mathrm{k}+1$.

Since (i) holds and, $\mathrm{A} \in \mathrm{Z}$ and it follows from theorem (2.3) that all principal submatrices of order k or less are M - matrices .

Then it follows from theorem (2.4) that $A[\beta]$ is an $N_{0}-$ matrix .

Thus, $\mathrm{A} \in \mathrm{L}_{\mathrm{k}}$.
Hence the proof.

THEOREM : 1.6

Let $A \in M_{n}(R)$.Then Let $A \in L_{0}$ if and only if
(i) for every $0 \neq x \in R^{n}, x$ and $A x$ satisfy $\left(\mathrm{P}_{1}\right)$ and
(ii) for every $k \in N$, there is $0 \neq \mathrm{x} \in$ R^{n}. and $\alpha \subseteq \mathrm{N}$ with $|\alpha|=\mathrm{k}$ such that $\mathrm{x} \circ \mathrm{A}[\alpha]$ $\mathrm{x} \leq 0$.

PROOF :

Let $A \in M_{n}(R)$ and $K \in N$.
If $A \in L_{0}$ then $A \in Z$ and (i) follows from the lemma.

Further A has atleast one negative diagonal entry, say $a_{i j}$.

Then, for each $\alpha \subseteq \mathrm{N}$ with $|\alpha|=\mathrm{k}$ and j $\in \alpha, A[\alpha] e_{j} \leq 0$, where e_{j} denote the $\mathrm{j}^{\text {th }}$ standard basis vector .

Thus, $e_{j} \circ A[\alpha] e_{j} \leq 0$, which establishes necessity .
Conversely ,
Suppose (i) and (ii) holds .
Since (ii) holds, $\mathrm{A} \in \mathrm{Z}$ and in, light of the theorems ($2.3-2.5$) .
(ii) implies that $\mathrm{A} \notin \mathrm{L}_{\mathrm{k}}$ for $\mathrm{k} \in \mathrm{N}$.
Thus, $\mathrm{A} \in \mathrm{L}_{0}$, which completes the proof .
Hence the theorem .

Z - MATRICES AND ITS INVERSE
 2.1 Z-MATRICES

In this chapter we have 2 sections. In this section we have the Z - matrices and inverse Z - matrices .

DEFINITION : 2.1.1

Let $L_{s}($ for $s=0, \ldots, n)$ denote the class of matrices consisting of real $\mathrm{n} \times \mathrm{n}$ matrices which have the form

$$
A=t I-B \text {, where } B \geq 0 \text { and } \rho_{s}(B) \leq t
$$

$\leq \rho_{s+1} \quad \ldots \ldots \ldots(3.1 .1)$
Here
$\rho_{s}(B):=\max \{\rho(B): B$ is an $s \times s$ principal submatrix of $B\}$ and we get
$\rho_{0}(B):=-\infty$ and $\rho_{n+1}(B):=\infty$.

REMARK : 2.1.2

If one considers matrices of different dimensions, one should introduce another index which gives the dimension of the matrices. Hence one should use $L_{s, n}$ in definition (3.1.1) .
Then the two classes $L_{s, n}$ and $L_{t, m}$ consist of matrices of the same type. (eg . M - matrices, N 0_{0} - matrices) if and only if $n-s=m-t$.

THEOREM : 2.1.3

Let $A \in R^{n, n}$ be a nonsingular matrix , and let λ be a real eigen value of A with $\lambda \neq \rho$ (A). Then

```
\lambda < \rho [ n / 2 ] (A )
(3.1.2 )
```

Since Z - matrices are closely related to non negative matrices, we now obtain.

THEOREM : 2.1.4

Let $\mathrm{A} \in \mathrm{L}_{\mathrm{s}}$. Then
(i) $\operatorname{det} \mathrm{A} \geq 0$ if $\mathrm{s}=\mathrm{n}$,
(ii) $\operatorname{det} \mathrm{A} \leq 0$ if $[\mathrm{n} / 2] \leq \mathrm{s}<\mathrm{n}$.

PROOF :

It is well known that (i) holds .
Let $\mathrm{A} \in \mathrm{L}_{\mathrm{s}}$ with $\mathrm{A}=\mathrm{tI}-\mathrm{B}, \mathrm{B} \geq 0$ and a fixed $t \in R$.
Now consider the characteristic polynomial of B ,
$\chi(z)=\operatorname{det}(z I-B)$.
The real zeros of $\chi(z)$ indicate the changes of the sign of the determinant of Z - matrices corresponding to the matrix B . But the zeros of χ (
z) are the eigen values of B .

Hence, with theorem 3.1.3 (ii) follows .
Hence the theorem .

EXAMPLE : 2.1.5

Let J_{k} denote the $\mathrm{k} \times \mathrm{k}$ matrix of all ones . First assume that n is even. Let $\mathrm{r}:=\mathrm{n} / 2$.Then let $\mathrm{A}_{11}:=\alpha \mathrm{I}_{\mathrm{r}}-\mathrm{J}_{\mathrm{r}}$ and $\mathrm{A}_{22}:=\beta \mathrm{I}_{\mathrm{n}-\mathrm{r}}-\mathrm{J}_{\mathrm{n}-\mathrm{r}}$.

If $\mathrm{s} \leq \alpha, \beta<\mathrm{s}+1$; then $\alpha \mathrm{I}_{\mathrm{r}}-\mathrm{J}_{\mathrm{r}}$ and $\beta \mathrm{I}_{\mathrm{n}}$ ${ }_{-\mathrm{r}}-\mathrm{J}_{\mathrm{n}-\mathrm{r}}$ are in L_{s}.

Now, if $\mathrm{s}<\mathrm{n} / 2$, then $\operatorname{det} \mathrm{A}_{11}<0$ and $\operatorname{det} \mathrm{A}_{22}<0$.

However, $\mathrm{A}=\mathrm{A}_{11} \oplus \mathrm{~A}_{22} \in \mathrm{~L}_{\mathrm{s}}$ and $\operatorname{det} \mathrm{A}$ >0.

Similarly, one can construct examples for an odd dimension n.
Thus, all classes of Z - matrices consisting of matrices of different dimensions , except the classes of M-matrices, N_{0} - matrices and F_{0} matrices include matrices with different signs of their determinants.

However, if we consider the classes L_{s} which consist by definition of matrices of the same definition n , then $\operatorname{det} \mathrm{A} \leq 0$ if $\mathrm{A} \in \mathrm{L}_{\mathrm{s}}$ and $[\mathrm{n} / 2$] $\leq \mathrm{s}<\mathrm{n}$.
Obviously, every Z - matrix A, except an M matrix, has at least one negative eigen value .
However, if $\mathrm{A} \in \mathrm{L}_{\mathrm{s}}$ with $[\mathrm{n} / 2] \leq \mathrm{s}<\mathrm{n}$, then theorem states that A has exactly one negative eigen value.

THEOREM : 2.1.6

Let $A=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be a Z - matrix. let n (A) denote the smallest real eigen value of A . Let $a=\max \left\{a_{i j}\right\}$. Then the circle c (A) : $=\left\{\left.\mathrm{z} \in\right|^{\mathrm{n}}:|\mathrm{z}-\mathrm{a}| \leq \mathrm{a}-\mathrm{n}(\mathrm{a})\right\}$ contains all eigen values of A .

PROOF :

Let λ be an eigen value of A .
Since $a=\max \left\{\operatorname{aij}_{\mathrm{j}}\right\}$, the matrix $\mathrm{a} I-A$ is nonnegative.
Hence, the modules of each eigenvalues of a I - A is less than $\rho(\mathrm{aI}-\mathrm{A})$.
Thus,

$$
|a-\lambda| \leq \rho(a I-A)=a-n(A)
$$

Hence the theorem.

2.2 INVERSE Z - MATRICES

In this section, we have definition and the theorems of Inverse Z - matrices .

DEFINITION : 2.2.1

A nonsingular matrix is called an inverse Z - matrix if C^{-1} is a Z - matrix. More precisely, a nonsingular matrix $C \in R^{n \cdot n}$ is called inverse L_{5} - matrix if $\mathrm{C}^{-1} \in \mathrm{~L}_{\mathrm{s}}$ for one s with $\mathrm{S} \in\{0, \ldots, \mathrm{n}$ \} .

Thus, inverse M-matrices are inverse L_{n} - matrices, inverse N_{0} - matrices are inverse L_{n-1} - matrices and inverse F_{0} - matrices are inverse L_{n} -2-matrices .

THEOREM : 2.2.2

Let C be an inverse Z - matrix partitioned as

$$
\mathrm{C}=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Where C_{11} is a non singular principal submatrix of C of orbitrary order. Then C/C ${ }_{11}$ is also an inverse Z - matrix .

PROOF :

Let $\mathrm{A}:=\mathrm{C}^{-1}$ be partitioned conformally with C so that

$$
\mathrm{A}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Using the explicit form of C^{-1} as in 3.2.2 we have

$$
A_{22}=\left(C / C_{11}\right)^{-1}
$$

Hence, A_{22} is nonsingular. But A_{22} is a principal submatrix of a Z - matrix ; therefore A_{22} itself is a Z - matrix .
Thus, $C / C_{11}=A_{22}^{-1}$ is an Z - matrix .
Hence the theorem .

DEFINITION : 2.2.3

$$
\begin{aligned}
& \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \in \mathrm{R}^{\mathrm{n} \cdot \mathrm{n}} \text { is of type }-\mathrm{D} \text { if } \\
& \qquad a_{i j}=\left\{\begin{array}{l}
a_{i}, i \leq j \\
a_{j}, i>j
\end{array} \text { where } \mathrm{a}_{\mathrm{n}}>\mathrm{a}_{\mathrm{n}}\right.
\end{aligned}
$$

${ }_{-1}>\ldots>\mathrm{a}_{1}$
Markham proved that the inverse of a type D matrix A, satisfying $a_{1}>0$ is a tridiagonal $M-$ matrix .

THEOREM : 2.2.4

Suppose $A=\left[a_{i j}\right] \in R^{n \cdot n}$ is a matrix of type - D with $a_{1} \neq 0$. Let s denote the number of nonpositive parameters in the sequence $a_{n}>\ldots>a$ 1. Then A^{-1} is a tridiagonal Z - matrix and $\mathrm{A}^{-1} \in$ $\mathrm{L}_{\mathrm{s}-1}$, where $\mathrm{L}_{-1}:=\mathrm{L}_{\mathrm{n}}$.

PROOF :

Since $\mathrm{a}_{1} \neq 0$, A is nonsingular. In the following we prove by induction on the dimension n that the inverse of A is a tridiagonal Z - matrix .
For $\mathrm{n}=1$ and $\mathrm{n}=2$ this is obvious .
Now we partition A as

$$
\mathrm{A}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Such that $\mathrm{A}_{11} \in \mathrm{R}^{\mathrm{n} \cdot \mathrm{n}}$ and $\mathrm{A}_{22} \in \mathrm{R}^{\mathrm{n}-\mathrm{r}, \mathrm{n}-\mathrm{r}}, 1$ $\leq r<n$, are non singular.
The inverse of A is given by

$$
\left[\begin{array}{cc}
\left(A / A_{22}\right)^{-1} & -A^{-1}{ }_{11} A_{12}\left(A / A_{11}\right)^{-1} \\
-A^{-1}{ }_{11} A_{21}\left(A / A_{11}\right)^{-1} & \left(A / A_{11}\right)^{-1}
\end{array}\right]
$$

Proposition (3.2.8) and the inductive hypothesis yield that $\left(A / A_{11}\right)^{-1}$ and $\left(A / A_{22}\right)^{-1}$ are tridiagonal Z - matrices .

As seen in 3.2.4 we have $A_{11}^{-1} A_{12}=e_{r} \xi_{n-r}^{T}$.
Moreover, since he first diagonal entry of $\left(A / A_{11}\right)$ is $\mathrm{a}_{\mathrm{r}+1}-\mathrm{a}_{\mathrm{r}}>0$, we obtain with (3.2.3) that only the entry at position $(\mathrm{r}, 1)$ of $-A_{11}^{-1} A_{12}\left(A / A_{11}\right)^{-1}$ is different from zero and that this entry is negative.
Then, with the symmetry of A, we have that A^{-1} is a tridiagonal Z - matrix .
If $s=0, \mathrm{~A}$ is nonnegative.
Thus, A^{-1} is an M - matrix .
If $\mathrm{s} \geq 1$, if follows from (3.2.5) that $\operatorname{det} \mathrm{A}<0$.
Moreover, all principal minors of order greater than $\mathrm{n}-\mathrm{s}$ are nonpositive .
However, the determinant of the principal matrix consisting of the rows and columns $\mathrm{s}+1, \ldots, \mathrm{n}$ is positive.

But then theorem gives that $\mathrm{A}^{-1} \in \mathrm{~L}_{\mathrm{s}-1}$.
Hence the theorem .

REFERENCES

[1] Johnson .G. A , Inverse N_{0} - matrices, Linear Algebra Appl . (1985)).
[2] Meyer . C . D , Uncoupling the perron eigenvector problem, Linear Algebra Appl .(1989) .
[3] Nabben . R , Z - matrices and inverse Z matrices, Linear Algebra Appl (1977) .
[4] Smith . R .L , Some notes on Z - matrices , Linear algebra Appl (1988)
[5] Smith . R. L , Some results on a partition of Z - matrices , Linear Algebra Appl . (1995) .
[6] Smith . Ronald . L , on characterizing Z matrices, Linear Algebra and its Appl . (2001).

